Brandeis Alumnus Receives Breakthrough Prize

Drew WeissmanBrandeis alumnus, Drew Weissman, ’81, MA ’81, P’15 along with Katalin Karikó have been awarded the Breakthrough Prize in Life Sciences.  Weissman and Karikó received the Lewis S. Rosenstiel Award for Distinguished Work in Basic Medical Research from Brandeis earlier this year.

While the Breakthrough Prize is considered the world’s largest science prize at $3 million, it is one of the many awards that Weissman and Kariko have been receiving as a result of their decades of research into mRNA therapies. It is this research that has led to the innovative COVID-19 vaccines developed by Pfizer/BioNTech and Moderna.

After earning his BA and MA degrees from Brandeis, Weissman went on to receive his PhD in Immunology from Boston University in 1987. He did a postdoctoral fellowship at the National Institutes of Health under Anthony Fauci. He is now a professor at University of Pennsylvania’s Perelman School of Medicine.

Additional information:

New Undergraduate Engineering Science Program Approved

Technology is central to our society. Universities play a key role as innovation hubs in new technology development, by linking knowledge creation, workforce development and commerce. After a multi-year planning process with Brandeis stakeholders and Engineering education experts, the Brandeis Faculty and Board of Trustees has approved the creation of a distinctively Brandeisian undergraduate Engineering Science program, designed for ABET accreditation. Unlike other models in which Engineers are siloed in their own department or school, this interdepartmental program is designed to  maximize horizontal integration across and beyond the Sciences.  All hands are now on deck to make this program a reality.  Institutional Advancement is working closely with faculty to raise the funds necessary to meet our ambitious goals.

Science Engineering LogoTo build up this program, we will  capitalize on the existing synergy between the life and physical sciences, while enhancing core research areas with an emphasis on translating basic research to technological applications.  Our goal is to integrate the engineering curriculum with the social justice mission that is integral to Brandeis. We envision providing opportunities for our students and faculty to deeply engage in science, design, and problem-solving while participating in a curriculum and culture that grapples with issues of social justice, business ethics and sustainability. The curriculum will be designed with these aspirations by engaging faculty from all of arts and sciences, IBS and Heller.  Ultimately, we hope that this new program will give our students the tools to intervene in the world and challenge them to build a better one.

We welcome input from our friends and alums as we begin to engage in the task of building up this exciting new program.

Summer Research Program back to (nearly) normal in 2021

SciFest 2019With increasing vaccination rates and declining positive Covid test rates, the Division of Science is looking forward to a vibrant, in-person summer undergraduate research program kicking off right after Memorial Day. 

The Division of Science summer program pairs first-hand research, community building, and guidance from Brandeis graduate students and postdoctoral fellows to provide undergraduate students a high-quality research experience. Past summer undergraduates have gone on to make substantial contributions (even as first authors!) to peer-reviewed research publications in fields such as materials chemistry (Shi et al., “Sunlight-activated phase change materials for controlled heat storage and triggered release”), molecular biology (Lamper et al., “A phosphorylation-regulated eIF3d translation switch mediates cellular adaptation to metabolic stress”) and neuroscience (He et al., “Rapid adaptation to Elevated Extracellular Potassium in the Pyloric Circuit of the Crab, Cancer borealis).

For Summer 2021, we are excited to announce that 58 Brandeis undergraduate researchers will be supported through the Division of Science programs and funding sources including NSF, NIH, and generous Brandeis alumni and foundation donors.

Additionally, the MRSEC Research Experience for Undergraduates (REU) program will support 6 undergraduate students from Hampton University for a 10-week, hands-on research program that runs in parallel with the MRSEC Summer Materials Undergraduate Research Fellowship. REU participants are mentored by MRSEC graduate students and postdoctoral fellows and contribute to materials science research efforts on Brandeis’s campus.

We will conclude the summer with SciFest, our annual summer poster session showcasing undergraduate research in the sciences, on August 5. Check the SciFest website for updates about the time and details for the session. 

Congratulations to all fellowship recipients! 

Tijana Ivanovic selected to speak at 2021 Future of Biophysics Burroughs Wellcome Fund Symposium

Tijana IvanovicTijana Ivanovic, Assistant Professor of Biochemistry, has been selected as one of four young scientists to speak at the 2021 Future of Biophysics Burroughs Wellcome Fund Symposium on February 23, 2021. This symposium is part of the 65th Annual Meeting of the Biophysical Society and due to COVID concerns, will be held virtually.

The purpose of this symposium is to highlight the work of young researchers who are currently conducting research at the intersection of the physical and life sciences. Research in the Ivanovic Laboratory uses biophysical methods to uncover fundamental molecular mechanisms of virus translocation across biological membranes.

The other speakers selected for the 2021 Symposium are Elisabeth Fischer-Friedrich, TU Dresden, Germany; Abhishek Singharoy, Arizona State University, USA; and Chen Song, Peking University, China.

Meet the Science UDRs at the Ultimate Science Navigation Event (9/23)

Ultimate Science Navigation posterAt The Ultimate Science Navigation event TOMORROW (9/23), students can collaborate with the science UDRs to learn about the different offerings in the sciences, how to navigate each major/minor, what each major/minor has to offer, all with an emphasis on exploring the intersections between different programs in the sciences. We will have UDRs representing biochemistry, biology, neuroscience, chemistry, physics, and biophysics!

Students can join in the morning on Zoom from 9:30-10AM, or for the rest of the day through the new Brandeis science community Slack workspace to discuss their questions related to the majors with the UDRs! Email Lance Babcock (lbabcock@brandeis.edu), Maggie Wang (maki@brandeis.edu) or the other science UDRs for the Zoom link and Slack workspace link.

Shinji Rho named 2020 Goldwater Scholar

Shinji RhoCongratulations to Shinji Rho who has been named a 2020 Goldwater Scholar.  The Goldwater Scholarship is a national scholarship designed to encourage outstanding students in their sophomore and junior year to pursue research careers in the fields of mathematics, the natural sciences, and engineering.

Shinji is currently a junior. Her project at Brandeis is on a transcriptional activator Gal4, which binds to upstream activating sequence (UAS) sites in the yeast genome to promote transcription. Previous studies have shown that dwell time of Gal4 on the UAS is significantly longer in purified systems than in cells. She is interested in finding the reason for this dwell time difference using single-molecule light microscopy. The findings of her project will provide a more realistic view of how transcription activation system behaves when nuclear proteins are present. 

Shinji plans to obtain a PhD degree in cancer biology, ultimately conducting research on developing more accurate and easily accessible breast cancer diagnosis methods.

Her mentor is Jeff Gelles, Aron and Imre Tauber Professor of Biochemistry and Molecular Pharmacology.

 

 Basketball, Dancing Proteins, and Life-saving Drugs

Dorothee Kern, Brandeis Magazine article
Dorothee Kern (center) with students in her Brandeis lab. (Image: Mike Lovett)

The Fall 2019 issue of Brandeis Magazine features a cover story on Professor of Biochemistry and HHMI Investigator Dorothee Kern.  The article describes Kern’s trajectory from her youth and education in the former East Germany to her current research and teaching at Brandeis to her co-founding of Relay Therapeutics, a Cambridge company pioneering new approaches to anti-cancer drug discovery.

 

Jeff Gelles elected to American Academy of Arts and Sciences

Jeff Gelles, 2019 AAAS recipient
credit: Heratch Ekmekjian

Jeff Gelles, the Aron and Imre Tauber Professor of Biochemistry and Molecular Pharmacology, has been elected to the American Academy of Arts and Sciences. He was among the  more than 200 outstanding individuals that were elected to the Academy in 2019 and announced on April 17.

The Gelles lab studies “little engines” or the nanometer-sized machines made of protein, RNA, and DNA molecules that carry out the essential processes in living cells.  The lab uses single-molecule light microscopy methods to study the functional mechanisms of these macromolecular complexes in cytoskeletal function, transcription and transcription regulation, and RNA processing.

Founded in 17890, the Academy recognizes the outstanding achievements of individuals in academia, the arts, business, government, and public affairs.

Read more: Amacad.org, BrandeisNow

 

 

 

 

The Volen Center Turns 25 Years Old

[metaslider id=7028]

Since its construction at the heart of the Brandeis campus, the Volen National Center for Complex Systems has been a key focal point of the Brandeis campus. The structure was dedicated on October 20, 1994 and has served as a gateway to the Brandeis Science Complex for the past 25 years. Planning for the construction of the building began in 1989 with funding from the federal government. Additional funding from the government and donations from benefactors followed. The total cost of construction was over $31 million.

The Center’s primary focus is the study of one of the most complex of complex systems – the human brain and mind. When the Volen Center was formed in 1989, its mission statement was “to advance our understanding of cognitive processes, perceptions, neuroscience, and the development and application of parallel computer systems.” As part of this mission, a retreat was first held in May 1989. This retreat has evolved into the annual Volen Retreat. True to the collaborative focus of the Center, the Volen Retreat includes talks from multiple disciplines of Brandeis faculty. Thanks to the M. R. Bauer Foundation, a lecture series and week-long Distinguished Lecturer Visitors series brings scientists from all over the world  to the Brandeis campus to talk about their research and interact with faculty, postdocs and graduate students.

The bricks and mortar of the Volen Center provided essential office and lab space. In addition to the building, new Brandeis faculty became a part of the Volen Center. Leslie Griffith joined the Center in September 1992. Susan Birren followed in July 1993 and Jordan Pollack in September 1994. Faculty and labs of Computer Science, Linguistics, Biochemistry and Neuroscience moved into the completed structure in May 1994.

What has been impact of the Volen Center? Barbara Wrightson, who was the Program Project Coordinator during the Volen construction and is now the Director of Budget and Planning in the Office of the Dean of Arts and Sciences, said that “the Volen Center helped to nurture the fabulous growth of the neuroscience program at Brandeis.” Additionally, shortly after moving into Volen, the Computer Science department experienced a boom in enrollment. The department saw its enrollment double in the decade after the Center opened.

 

Julia Kardon Joins Biochemistry as Assistant Professor

Julia Kardon has joined the Department of Biochemistry as an assistant professor.  Her research addresses the molecular mechanisms that control the activity and quality of mitochondrial proteins to match the dynamic needs of eukaryotic cells. She discovered that a mitochondrial chaperone (ClpX) activates a conserved biosynthetic enzyme through partial unfolding. This discovery poses testable models for how protein unfolding can be controlled and limited and thus how protein unfoldases can direct diverse transformations of their substrates. Her lab will employ diverse biochemical and biophysical approaches to delineate molecular mechanisms of chaperone-mediated control of mitochondrial protein activity, in combination with cell biological, genetic, and proteomic tools to discover new components of mitochondrial protein regulation and quality control.

Julia performed her postdoctoral research with Tania Baker at MIT. She received a Ph.D. in Cell Biology from the University of California, San Francisco with Ron Vale and a B.S. in Molecular Biophysics and Biochemistry from Yale University.