Simulations Say Viral Genome Lengths are Optimal for Capsid Assembly

Viruses are infectious agents made up of proteins and a genome made of DNA or RNA. Upon infecting a host cell, viruses hijack the cell’s gene expression machinery and force it to produce copies of the viral genome and proteins, which then assemble into new viruses that can eventually infect other host cells. Because assembly is an essential step in the viral life cycle, understanding how this process occurs could significantly advance the fight against viral diseases.

In many viral families, a protein shell called a capsid forms around the viral genome during the assembly process. Capsids can also assemble around nucleic acids in solution, indicating that a host cell is not required for their formation. Since capsid proteins are positively charged, and nucleic acids are negatively charged, electrostatic interactions between the two are thought to be important in capsid assembly. Current questions of interest are how structural features of the viral genome affect assembly, and why the negative charge on viral genomes is actually far greater than the positive charge on capsids. These questions are difficult to address experimentally because most of the intermediates that form during virus assembly are too short-lived to be imaged.

hagan-capsid-sim
Snapshots from a computer simulation in which model capsid subunits (blue) assemble around a linear, negatively charged polymer (red). Positive charges on the capsid proteins are shown in yellow.

In a new paper in eLife, Brandeis postdoc Jason Perlmutter, Physics grad student Cong Qiao, and Associate Professor Michael Hagan have used state of the art computational methods and advances in graphical processing units (on our High Performance Computing cluster) to produce the most realistic model of capsid assembly to date. They showed that the stability of the complex formed between the nucleic acid and the capsid depends on the length of the viral genome. Yield was highest for genomes within a certain range of lengths, and capsids that assembled around longer or shorter genomes tended to be malformed.

Perlmutter et al. also explored how structural features of the virus — including base-pairing between viral nucleic acids, and the size and charge of the capsid — determine the optimal length of the viral genome. When they included structural data from real viruses in their simulations and predicted the optimal lengths for the viral genome, the results were very similar to those seen in existing viruses. This indicates that the structure of the viral genome has been optimized to promote packaging into capsids. Understanding this relationship between structure and packaging will make it easier to develop antiviral agents that thwart or misdirect virus assembly, and could aid the redesign of viruses for use in gene therapy and drug delivery.

Perlmutter JD, Qiao C, Hagan MF. Viral genome structures are optimal for capsid assembly. eLife 2013;2:e00632

IGERT Video Poster Competition Voting Open

Tony Ng (a grad student in Paul Miller’s lab in Neuroscience) writes:

I’m entering a nationwide video/poster competition organized by the National Science Foundation (NSF) under the IGERT program.  There are over 100 three-minute-videos/posters in the competition.  The videos/posters are divided into 18 fields, all of which are multidisciplinary.  Mine covers cognition/biology/physics.

The competition has a Public Choice award.  Winning the award requires Facebook “likes” on my page.  I need on the order ~1000 “likes” to be in contention.  The bar has been raised from last year’s.  The competition is fierce.  Each/every vote from the Brandeis community counts!

The competition opens today (5/21) and ends Thursday (5/23) at 10pm.  For a vote to count, it is imperative to click on the “Public Choice” button, which would then trigger a Facebook “like” sign-in.  Anyone with an existing Facebook account can contribute.

Here’s the link to my 3-minute video/poster:

http://posterhall.org/igert2013/posters/402

Act now! Tthe competition closes on Thursday at 10pm!

Hope you enjoy the videos!

Update (2 pm):

Andrew Russell from the Petsko-Ringe lab also has a poster in the competition on studying Aβ oligomers to understand Alzheimer’s Disease – check it out — vote early, vote often?

http://posterhall.org/igert2013/posters/416