Spencer Bloch to speak at 2018 Eisenbud Lectures

Eisenbud 2018 Poster

The 2018 Eisenbud Lectures in Mathematics and Physics will be held from November 13-15 at Brandeis University. This years speaker is Spencer Bloch, Professor of Mathematics at the Yau Mathematical Sciences Center at Tsinghua University, and Emeritus Professor of Mathematics at the University of Chicago.

Professor Bloch is a mathematician whose work has influenced many subjects including number theory, algebraic geometry and mathematical physics. The following lectures will be informative and entertaining:

  • Tuesday, November 13 at 4pm: “Multiple Zeta Values and Mixed Tate Motives over ℤ”  (intended for a general audience) Location: Abelson 131.
  • Wednesday, November 14 at 4pm: “Motivic Γ-functions” (colloquium style lecture). Location: Brown 316.
  • Thursday, November 15 at 4pm, “Relative Completions,” Location: Goldsmith 317.

Refreshments will be served 15 minutes before each talk. There will be a reception in Abelson 333 following Tuesday’s talk.

The Eisenbud Lectures are the result of a generous donation by Leonard and Ruth-Jean Eisenbud intended for a yearly set of lectures by an eminent physicist or mathematician working close to the interface of the two subjects.

Brandeis IGERT Summer Institute Scheduled for June 25-28

The Brandeis IGERT program in “Geometry and Dynamics” is holding its Summer Institute from June 25-28. This is a series of lectures aimed at graduate students on the mathematical & theoretical side of the sciences, on a broad spectrum of topics — of course, postdocs, faculty, and sufficiently advanced undergraduates should enjoy these as well.

Once again we have an excellent list of speakers from inside and outside of Brandeis, on subjects including quantum computing, blockchain technology, origami, and the carbon cycle and mass extinction.  A full schedule is available. All are welcome and coffee and lunch will be provided: please RSVP here or by selecting the button at the bottom of the schedule page, so that we have an accurate headcount.

We hope to see you there!

SPROUT Awards Information Sessions to be held Jan. 24 and Feb. 1

SPROUT logoThe SPROUT Awards are back! If you are interested in the SPROUT program, which offers funding for bench research, the Office of Technology Licensing is hosting Information Sessions for you to learn more on how to apply. Get your questions answered by the program’s administrators. There will be two separate sessions for your convenience: January 24th, 3-4 PM at Carl J. Shapiro Science Center Library and February 1st, 3-4 PM in Volen 201. Light refreshments will be served.

New this year, SPROUT winners may also be eligible for up to an additional $3,000 of I-Corps funding from the National Science Foundation. This extra funding is specifically earmarked for teams to conduct early customer discovery and validation of their technology. Those that go through the Brandeis I-Corps program then become eligible to apply to the National I-Corps program which provides grants up to $50,000.

In the past, successful SPROUT applications have come from all departments in the sciences including Biology, Biochemistry, Physics, and Chemistry. Past candidates have proposed projects ranging from early-stage research and development to patent-ready projects. Many undergraduates, graduates, staff and faculty have all pitched various projects from a New Strategy to Treat Chronic Infections (Hedstrom Lab) to Development of a New Crystal Screening Chip (Fraden Lab) to a panel of outside judges in the hopes of receiving funding.  Read more about SPROUT and learn about past projects.

Waltham Teachers Meet with Brandeis Scientists

[metaslider id=7806]
On Tuesday, November 7th, 32 science teachers from Waltham Public Middle and High Schools visited the Brandeis science labs as part of the Third Annual Brandeis Scientists in the Classroom Workshop. The workshop is designed to be an opportunity to connect middle and high school science teachers with Brandeis scientists. The teachers were grouped and matched with 14 Brandeis graduate students, postdocs and faculty who shared their Brandeis science research directly with the teachers to help them understand what we do, so they can better integrate science into their classroom lessons.

This event was an extension of an ongoing partnership between Brandeis and Waltham High School and was sponsored by the Brandeis MRSEC. The Waltham school district has a high percentage of students from backgrounds underrepresented in the sciences. Brandeis offers several on-going programs with Waltham teachers and students in an effort to broaden their participation in STEM.

James Collins to receive the 2017 Gabbay Award on Oct. 18

James Collins

On Wednesday, October 18, 2017, the 2017 Jacob and Louise Gabbay Award in Biotechnology and Medicine will be given to James J. Collins from MIT. Professor Collins will be delivering his lecture entitled Synthetic Biology: Life Redesigned at 4:00pm at Brandeis in Gerstenzang 121.

Professor Collins is receiving the award “for his inventive work in synthetic biology that created a new area of research, enabling multiple biomedical applications and launching a new sector of the biotechnology industry”. He is the Termeer Professor of Medical Engineering and Science and Professor of Biological Engineering at MIT, also Core Founding Faculty at the Wyss Institute (Harvard University) and an Institute Member of the Broad Institute.

The Gabbay Award was created in 1998 by the Jacob and Louise Gabbay Foundation in order to recognize scientists working in academia, medicine or industry for their outstanding achievements developing scientific content and significant results in the biomedical sciences.

 

CaMKII: some basics to remember

The theme of Thursday’s Volen Center for Complex Systems annual retreat will be Breakthroughs in understanding the role of CaMKII in synaptic function and memory and honors the pioneering work of John Lisman. To help bring non-experts up to speed, we asked Neuroscience Ph.D. students Stephen D. Alkins and Johanna G. Flyer-Adams from the Griffith lab at Brandeis for a quick primer on CaMKII.

What’s a protein kinase? 

Protein kinases are enzymes that act by adding phosphate groups to other proteins – a process called phosphorylation. Phosphorylation of a protein usually initiates a cascade of downstream effects such as changes in the protein’s 3D shape,  changes in its interactions with other proteins, changes in its activity and changes in its localization. In causing these types of changes, kinases facilitate some of the most essential cellular and molecular processes required for survival and proper functionality.

Aren’t there lots of protein kinases? What makes CaMKII special? 

Among the roughly 500+ genes in the human genome encoding protein kinases, a kinase known as calcium (Ca2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylates serine or threonine residues in a broad array of target proteins.  Though found in many different tissues (skeletal muscle, cardiac muscle, spleen, etc.), there is a lot of CaMKII in the brain– about 1% of total forebrain protein and 2% of total hippocampal protein (in rats). Previous research, including pivotal contributions from the Lisman Lab at Brandeis University working in mammalian brain, has identified CaMKII as a cellular and molecular correlate of learning and memory through its multiple roles governing normal neuronal structure, synaptic strength, plasticity, and homeostasis. The Griffith Lab has been instrumental in demonstrating that these roles of the kinase are conserved in invertebrates.

Why do we think CaMKII might play a role in memory?

a) Location!

As previously mentioned, CaMKII accounts for up to 2% of all proteins in memory-important brain regions like the hippocampus. It’s also highly abundant at neuronal synapses, where neurons communicate with each other.

b) Function!

Memory is thought to require a process called long term potentiation (LTP) where two neurons, in response to environmental changes, will change the strength of the synaptic connections by which they communicate with each other—these changes will last even after the environmental input has disappeared. We know that CaMKII is required for LTP. We also know that the increases in neuronal calcium levels that accompany neuronal activation and cause LTP also allow CaMKII to phosphorylate itself. This autophosphorylation of CaMKII changes its kinase activity so that CaMKII can stay active well past the window of neuronal activation, essentially ‘storing’ the memory of previous neuronal activity—much like LTP!

c) Structure!

Ultimately, the issue with ‘molecular memory’ is that all proteins degrade over time, causing one to ask how we can remember things for so long when the original proteins that stored that memory no longer exist. CaMKII is such an exciting candidate for molecular memory because it is mostly found as a dodecameric holoenzyme—this means that CaMKII likes to exist as a big assembly of twelve identical CaMKII subunits. However, each CaMKII subunit retains its kinase activity even when all twelve are assembled. What’s interesting is that the autophosphorylation and activation of one CaMKII subunit (which happens when neurons are activated and intracellular calcium levels rise) actually makes it easier for the other CaMKII subunits in the twelve-unit holoenzyme to become autophosphorylated and activated. This means that maybe when an activated subunit is old and get degraded, another new CaMKII subunit could take its place among the twelve-unit holoenzyme—and become activated just like the old subunit, allowing for the ‘molecular memory’ to last beyond when proteins degrade!

CaMKII phosphorylation and activationCaMKII in more detail…

Calcium binds to the small protein calmodulin and forms (Ca2+/CaM), which acts as a ‘second messenger’ that increases in concentration when neurons are activated. CaMKII relies on calcium/calmodulin (Ca2+/CaM) binding to activate an individual domain containing a regulatory segment.  In conditions of low calcium, elements within the CaMKII regulatory segment will have less affinity for (Ca2+/CaM) binding, keeping CaMKII in an autoinhibited state.  In conditions of high calcium, (Ca2+/CaM) binding initiates phosphorylation at three threonine residue sites, including Thr286 which prevents rebinding of the regulatory segment, thus keeping CaMKII constitutively active even when calcium levels fall.  In this activated state CaMKII can autophosphorylate inactivated intra-kinase domains, and will undergo subunit exchange with neighboring inactivated CaMKII holoenzymes. Furthermore, mutation of CaMKII residues or binding sites in target proteins, such as postsynaptic glutamate (AMPA) receptors, disrupts establishment of long-term potentiation (LTP) in neurons.  Together, CaMKII’s role as molecular switch that bidirectionally, and autonomously regulates activity in neurons has earned it the illustrious title of a “memory molecule.”

What amino-acid manipulations might I hear about?

a) T286A:

Changing a threonine in a phosphorylation site to an alanine prevents phosphorylation at that site. Blocking Thr286 phosphorylation with a T286A mutation prevents CaMKII generation of autonomous activity that disrupts neuronal activity and results in learning deficits.

b) T286D:

Changing a threonine to an aspartate puts a negative charge at the site, often making it act like it’s always phosphorylated. In the case of CaMKII, a T286D mutation renders the kinase constitutively active, which can interrupt normal LTP induction and normal memory storage and acquisition.

To learn more:

Judith Tsipis Steps Down as Director of Genetic Counseling Program

Tsipis dinner

After 25 years at the helm of the Brandeis Genetic Counseling program, Judith Tsipis has handed over the leadership reins to Gretchen Schneider.

On June 3rd, close to 100 people gathered in the Levin Ballroom at Brandeis to honor and celebrate Judith’s illustrious career as a pioneer in the field of training genetic counselors. Attendees included over 40 alumni, former and present faculty members, family and close friends.

Highlights and memories were shared by: Beth Rosen-Sheidley, an alum from the first graduating class in 1994; Kathryn Spitzer Kim, the first Assistant Director from the Program; Gretchen Schneider; Judith’s son Yanni and husband, Kosta; and two additional alumni, Christa Haun and Jason Carmichael.

Judith created the master’s program in response to her own family’s experience with Canavan disease, a recessive degenerative disorder that causes progressive damage to nerve cells in the brain. Brandeis admitted its first class in 1992 and is proud to have over 200 alumni.

Judith will continue to be involved with the program in various capacities: coordinating journal club, serving as a thesis advisor and member of the Advisory Board.

 

 

 

Colleagues and Students Gather for Astrophysics Symposium

by Roopesh Ojha (PhD ’98)

Radio Galaxy NGC 4261. (credit: Teddy Cheung)

From June 28th through 30th, about fifty former and current students, colleagues and friends of Brandeis astrophysics Professors John Wardle and David Roberts gathered in the Physics building for a symposium titled “When Brandeis met Jansky: astrophysics and beyond.” This event was organized to celebrate their achievements in astrophysics and their impact on generations of students. Their work has established Brandeis as a major player in radio astronomy.

The symposium title refers to Karl Jansky who is credited with starting an entirely new means of studying the cosmos using radio waves. Radio astronomy arrived at Brandeis with Professor Wardle in 1972. He was joined in 1980 by Professor Roberts and together they pioneered a very powerful observational technique called Very Long Baseline Polarimetry. This involves the use of telescopes separated by thousands of kilometers to produce the sharpest images available to astronomers. Their methods allow astronomers to map the magnetic fields in and near celestial objects. With their students and colleagues, John and Dave have exploited this technique to study the magnetic fields in quasars and active galaxies, and near super massive black holes far outside our Milky Way galaxy as well as black holes closer to home.

Physics Conference Group
Professors John Wardle and David Roberts (front right) with former students and colleagues on the steps of the Abelson physics building (photo: Mike Lovett)

The reach of John and Dave’s work was reflected in the content of the presentations and the composition of the attendees, some of whom had traveled from as far afield as South Korea, India, and Europe. All major centers of radio astronomy were represented. At the conference dinner, several former students expressed their appreciation for the roles Dave and John have played as their mentors.

In their presentations, Dave and John described their current projects and highlighted the work of their undergraduates, graduate students and postdoctoral fellows, who have all gone on to successful careers in academia and industry.

The nineteen PhD theses produced by the Brandeis Radio Astronomy group

Professor Roberts has decided to retire at the end of August, though his retirement plans include a huge program of continuing research into unusual-shaped radio galaxies. These may represent galaxy mergers and the possible merger of their central black holes, and is being carried out with colleagues in India. Professor Wardle has no intention of retiring and is expanding his horizons so to speak — he is part of the Event Horizon Telescope collaboration, an international team of astronomers that is attempting to make the first image of the ‘event horizon’* of a black hole!

The symposium was organized by Teddy Cheung (PhD ’05, now at the Naval Research Laboratory) and Roopesh Ojha (PhD ’98, now at NASA, Goddard Space Flight Center), with generous help and support from the Physics Department.

* The boundary around a black hole beyond which nothing can escape.

Summer SciFest 2017 to Showcase Undergrad Research on August 3

SciFest 2016Brandeis Summer Scifest, an Undergraduate Research Poster Session, will be held on Thursday, August 3. The poster session will be 1:00 to 3:00 pm in the Shapiro Science Center atrium.

SciFest is an annual poster session for undergraduates who have spent their summers working in both on-campus and off-campus labs doing scientific research, usually alongside grad students, postdocs and faculty members. It an opportunity for undergraduates from across the Division of Science, including summer visitors and Brandeis students, to present posters summarizing their research.

There were 106 posters presented last year. Prospective presenters for this year should note that the deadline to register for this event is July 25. Early registrants will get the prime locations for their posters!

The public is invited to attend and to discuss research with the students. As always, refreshments will be served.

Rosenstiel Award lectures on Mar 22 to honor Susan Lindquist

James Haber, Director of the Rosenstiel Center, writes:

The 46th annual Rosenstiel Award for Distinguished Work in Basic Medical Research was awarded last October to Susan Lindquist (MIT), one of the most inventive and influential life scientists of our generation.  Sue tragically passed away a few weeks thereafter; in her honor we have arranged a symposium to celebrate her lab’s great legacy.  The Award talks will be held in next Wednesday, March 22, in Gerstenzang 123 from 3:30 PM to 5:30 PM, followed by a reception open to all in the Shapiro Science Center atrium.  We hope you will all come to honor Sue Lindquist and to be edified by the excellent work carried out by her former colleagues.

Angelika Amon  (Massachusetts Institute of Technology)
“The Remarkable Scientific Life of Susan Lindquist”

Leah Cowen (University of Toronto)
“Harnessing Evolution to Thwart Microbial Drug Resistance and Treat Infectious Disease”

Daniel Jarosz (Stanford University)
“Remembering the Past: A New Form of Protein-Based Inheritance”

Sandro Santagata (Brigham and Women’s Hospital)
“Heat Shock Factor (HSF1): A Powerful Driver of Malignancy”

Susan Lindquist