Patching Up Broken Chromosomes

Olga Tsaponina and James Haber’s recent paper “Frequent Interchromosomal Template Switches during Gene Conversion in S. cerevisiae” was published online by Molecular Cell on July 24, 2014.

by James Haber

“The process of copying DNA every time our cells divide is exceptionally accurate, but in copying 6,000,000,000 base pairs of the genome mistakes do occur, including both mutations and the formation of chromosome breaks. These breaks must be repaired to maintain the integrity of our chromosomes.  In our recent paper we have demonstrated that the mechanism of patching up a broken chromosome is associated with a surprisingly high level of alterations of the sequence.  Many of these changes result from “slippage” of the DNA polymerases copying the DNA during the repair process; for example in copying a sequence of 4 Gs, the polymerase occasionally jumps over one, to lose a base from the sequence (a frameshift mutation).

graphical_abstract_350In this paper we focused on more dramatic slippage events in which the copying machinery jumped from one chromosome to a related but divergent sequence on another chromosome and then jumped back, creating a chimeric sequence.  These interchromosomal template switches (ICTS) occur at a low rate when the distant sequence is only 71% identical, but if we make that segment 100% identical we could find such jumps 10,000 times more frequently, in about 1 in 300 events.  This result reveals how unstable the copying machinery in DNA repair is compared to normal DNA replication. This was very surprising and provides an explanation for many complex rearrangements associated with cancers.  In carrying out this work we identified the first protein that is needed to permit these frequent jumps: a chromatin remodeling enzyme known as Rdh54 that previously did not have a well-defined role in DNA repair in somatic cells.

Finally, we learned a new role for the proteins that survey the genome for mismatched bases that arise during replication and found that one of these proteins, Msh6, is required to specify which strand of DNA containing a mismatch is the “good one” that should be used as the template to correct the mismatch.

This work was supported by the National Institutes of Health General Medical Institute”.

Leave a comment