Haber receives Yeast Genetic Meeting Lifetime Achievement Award

James Haber, the Abraham and Etta Goodman Professor of Biology and Director of the Rosenstiel Basic Medical Sciences Research Center, received a Lifetime Achievement Award from the Yeast Genetics Group during the Allied Genetics Conference’s annual meeting. The conference was held in Washington, DC from March 6 to 10, 2024.

The Allied Genetics Conference (TAGC), brings together scientists from multiple international biological research communities to share cutting-edge science, foster new collaborations, and strengthen existing relationships. The Yeast Community was one of eight communities that participated in the conference.

Haber was honored for his “lifetime contributions in the field of yeast genetics and outstanding community service”. Professor Haber was introduced by Gonen Memisoglu, one of his former graduate students.

Listen to James Haber’s YGM lecture

First Rosbash-Abovich Award Recipients Announced

Michael Rosbash, the Peter Gruber Endowed Chair in Neuroscience and Professor of Biology and his wife, Nadja Abovich, established the Rosbash-Abovich Award as a way to inspire and acknowledge excellence in research by post-doctoral fellows and graduate students in the Brandeis life sciences. The Rosbash-Abovich award will be awarded annually.

The award honors the most outstanding papers published the previous year that have been authored by a Brandeis postdoctoral fellow and a Brandeis PhD student. In addition to the honor being selected, each winner is presented with a monetary award.

Future winners will present their talks at upcoming Volen Scientific Retreats, but due to COVID restrictions, the 2020 winners will be presenting their talks during the Molecular Genetics Journal Club meetings.

Most outstanding paper by a post-doctoral fellow

Michael O'Donnell
Michael O’Donnell, PhD

The 2020 winner for the most outstanding post-doctoral paper is Michael O’Donnell for the publication titled “A neurotransmitter produced by gut bacteria modulates host sensory behavior“. O’Donnell, is a former postdoc in the Piali Sengupta Lab. Sengupta said

Mike is a remarkable scientist and mentor. He single-handedly and independently established a new research direction in my lab. He also served as an informal mentor to many graduate students and has continued to do so even after he left my lab. I greatly appreciated our long discussions and arguments, and he is very much missed.

Sengupta also noted that O’Donnell was chosen to receive this award

on the basis of the creativity and novelty of his work that was published in Nature. The committee was particularly interested in nominating a researcher who was a driving force behind the work and Mike certainly fulfilled this criteria.

O’Donnell is now an assistant professor at Yale and recently formed the O’Donnell lab. He presented his talk to the Molecular Genetics Journal Club on December 2, 2020. He spoke about his work on neuromodulators produced by different bacteria.

Most outstanding paper by a PhD student

James Haber & Gonen Memisoglu
Professor James Haber & Gonen Memisoglu, PhD

The recipient of the 2020 award for the most outstanding PhD student paper is Gonen Memisoglu for the publication “Mec1 ATR Autophosphorylation and Ddc2 ATRIP Phosphorylation Regulates DNA Damage Checkpoint Signaling.“ She was a PhD student in James Haber’s lab. She received her PhD in 2018 and is currently a postdoctoral fellow at the University of Chicago. She will be presenting her talk at the Molecular Genetics Journal Club on February 2, 2021.

When asked about his former PhD student, Haber said

I was delighted to learn that Gonen was the recipient of the Rosbash/Abovich award for the best publication by a graduate student last year; but I had to ask “which paper” because Gonen made two important discoveries last year about the way cells respond to DNA damage. Gonen helped develop a highly efficient way to edit the yeast genome and to create dozens of very precise mutations in the Mec1 gene that is the master regulator of the DNA damage response.  When there is a chromosome break, the Mec1 protein phosphorylates a number of proteins that creates a cascade of signaling to prevent cells from progressing through mitosis until damage is repaired. Gonen discovered that the extinction of the this signal depended on Mec1’s autophosphorylation of one specific target and that changing that specific amino acid to one that could not be phosphorylated was enough to cause cells to remain arrested. She also identified several alterations of the Ddc2 protein that associates with Mec1 that were also critical for its normal activation.

During her time in my lab Gonen was a super hard-working and exceptionally insightful grad student, but also incredibly generous with her time, helping others in the lab

Garrity lab finds moisture-sensing genes in mosquitoes

Summary figure for Garrity lab paperby Zachary Knecht, PhD candidate

As the solvent of living cells, water is critical for all life on earth.  This makes monitoring how environmental conditions impact evaporation and subsequently sensing and locating water sources important for animal survival. This is particularly critical for insects, whose small body size makes them highly susceptible to dehydration. In addition, moisture sensing, or hygrosensation, is also important for the spread of insect-born disease. Mosquitoes that spread malaria or viruses like dengue and Zika, not only need to locate bodies of standing water in which to lay eggs, but also home in on the moisture that emanates from our bodies when searching for a blood meal. This dual role for hygrosensing in mosquito biology makes their hygrosensory machinery a promising target for pest control strategies. Until now though, the genes and molecules that function in insect hygrosensation have been completely unknown.

In a pair of recent papers in the journal eLife, researchers in the Garrity Lab at Brandeis University, in collaboration with colleagues at the University of Lausanne in Switzerland, have uncovered the cellular and molecular mechanisms that underlie insect hygrosensation using the fruit fly Drosophila melanogaster. Like mosquitoes, fruit flies detect humidity through specialized, innervated hair-like structures located on their antennae called sensilla. Each hygrosensing sensilla contains one cell that responds to increasing humidity (a moist cell), and one that responds to decreasing humidity (a dry cell).  These papers demonstrate that the balance of activity between dry and moist cells allows the insect to seek out or avoid particular humidity levels, a preference which changes depending on how hydrated or dehydrated the fly is.

To identify the molecules involved in sensing moisture, the researchers looked for mutant flies unable to distinguish between humid and dry air. They found that animals with mutations in four different genes disrupted the behavior. Strikingly, each of these genes encoded a different member of the same family of sensory receptors, the so-called Ionotropic Receptors or IRs.  Although IRs are found only in invertebrates, they belong to the same family as the ionotropic Glutamate Receptors, which lie at the heart of communication between nerve cells in the animal brain, including the human brain.  IRs differ from these relatives in that instead of sensing signals sent by neurons, they detect signals coming from the environment.  IRs are best known to act as chemical receptors, but the group found that a subset of IRs act instead to sense humidity. The researchers found two broadly expressed IRs, Ir25a and Ir93a, were required by both the dry cells and moist cells while the other two IRs, Ir40a and Ir68a, were specifically required by the dry and the moist cells, respectively. This suggests that Ir25a and Ir93a contribute to the formation of both moist and dry receptors, while Ir40a and Ir68a provide the dry- and moist-specific subunits to the receptor. Consistent with this view, the loss of either Ir68a or Ir40a alone only partially reduces the animal’s ability to sense humidity, but animals with mutations in Ir25a, Ir93a or both Ir40a and Ir68a are completely blind to moisture.

Having identified the specific genes required for sensing moisture, the next step is to determine the precise mechanism by which humidity activates these receptors. Furthermore, these genes are conserved in mosquitoes and other disease vectors, providing a clear path to translate what’s known about fly hygrosensation into the mosquito. These papers lay the groundwork for new mosquito control strategies that aim to precisely inhibit their ability to seek out water to reproduce and to seek out hosts to bite and spread deadly pathogens.

SPROUT grant opportunity for 2015 announced

From the Brandeis Office of Technology Licensing:

The Brandeis Virtual Incubator invites members of the Brandeis Community (faculty, staff and students) to submit an application for the SPROUT Program. These Awards are intended to stimulate entrepreneurship on campus and help researchers launch their ideas and inventions from the lab to the marketplace.The SPROUT Program will provide pilot funding for innovative scientific projects within the Division of Science that require bench research, lab space, and/or lab equipment.

We will be awarding $50,000 to be shared among the most promising proposals.
Come get your questions answered at one of our upcoming information sessions.
Info Sessions: 
Thursday, February 26,  11:00 a.m.-12:00 p.m. (Volen, room 201)
Monday, March 2,  2:00 p.m.-3:00 p.m.   (Shapiro Science Center, 1st Floor Library, room 1-03)
 
Deadlines: Preliminary Proposals are due by Friday, March 6th
Please note, the introduction of the new SPARK Program geared towards innovative non-bench projects that have impact. An additional email will be sent detailing this program.
For more information on each program go to our website or contact the OTL program leaders,  Melissa Blackman for SPROUT and  Anu Ahuja  for SPARK.

Sleep and memory are connected by a pair of neurons in Drosophila

In a recent post on the Fly on the Wall blog, Neuroscience grad student Bethany Christmann talks about recently published research from Leslie Griffith’s lab:

 … [How are sleep and behavior] connected in the brain? Does sleep simply permit memory storage to take place, such that the part of the brain involved in memory just takes advantage of sleep whenever it can? Or are sleep and memory physically connected, and the same mechanism in the brain is involved in both? In a recent study published in eLife, researchers in the Griffith lab may have [uncovered the answer]. They found that a single pair of neurons, known as the DPM neurons, are actively involved in both sleep and memory storage in fruit flies.

Haynes PR, Christmann BL, Griffith LC. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. eLife. 2015;4.

Mitosis: One Polo controls it all

On November 6, 2014, Cell Cycle published a paper from the Yoshida lab entitled “The budding yeast Polo-like kinase Cdc5 is released from the nucleus in anaphase for timely mitotic exit.” This study was authored by Vladimir V. Botchkarev Jr., Valentina Rossio, and Satoshi Yoshida.

The cell cycle is one of the most fundamental biological processes whose ultimate goal is cell division with equal content of DNA in both daughter cells. The process of cell division is regulated by many intracellular events which must occur in a sequential order. These events include mitotic entry, faithful chromosome segregation, mitotic exit, and cytokinesis. Over the past 25 years, the Polo-like kinase (Polo) has been established to play important regulatory roles in each of these processes. Although many mitotic substrates of Polo have been discovered, the mechanism by which Polo can coordinate all of these mitotic events has remained largely elusive.

To understand the mechanism by which Polo can target its many substrates in a sequential order during mitosis, we decided to study the budding yeast Polo kinase Cdc5, which has high conservation with the human Polo-like kinase 1.

We found that Cdc5-GFP dynamically changes its localization during the cell cycle: Cdc5 is found in the cytoplasm in S- through early G2-phase, it accumulates in the nucleus at metaphase, and is released again to the cytoplasm in anaphase. Blocking nuclear import of Cdc5 in metaphase leads to a prolonged metaphase duration, suggesting that nuclear Cdc5 is required for chromosome segregation. In contrast, blocking nuclear release of Cdc5 in anaphase results in a prolonged anaphase duration, a defect in activation of the cytoplasmic Mitotic Exit Network, and a defect in cytokinesis. This indicates that Cdc5 is released from the nucleus to the cytoplasm in anaphase for timely mitotic exit and cytokinesis. We further found that activation of the Cdc14 phosphatase, a known nuclear substrate of Cdc5, is required for Cdc5 nuclear release in anaphase.

Collectively, our work reveals that the budding yeast Polo-like kinase Cdc5 controls the timing of mitotic events by dynamically changing its sub-cellular localization. Furthermore, our data suggests the existence of a positive feedback look between Cdc5 and Cdc14 to regulate timely mitotic exit. Read more

Brandeis will host Gene Expression and RNA Seminar (GEARS) meeting this October

Gene Expression and RNA Seminars (GEARS) club is a monthly event that includes scientific talks on the Gene Expression, RNA and Chromatin. Every month it is held at a different institute in the Boston area.

Brandeis University will be hosting the October GEARS meeting on Thursday, October 30 in Rosenstiel 118 from 6:30 – 7.30 PM and will feature three talks from Boston area researchers.  After the talks, there will be a social hour. This event is free and all are welcome to attend.

Speakers List:

“Hijacking an editing enzyme to reveal the targets of RNA-binding proteins”
Aoife McMahon, PhD, Rosbash lab, Brandeis University

“Genome protection against transposons by the piRNA amplifier complex”
Jordi Xiol, PhD, Moazed lab, Harvard Medical School

“Linking cancer metabolism, DNA repair and epigenetics: SIRT6 provides some clues”
Raul Mostoslavsky, PhD, Associate Professor, MGH Cancer Center/Harvard Medical School/Broad Institute

GEARS Club is generously supported with the help of New England Biolabs and Cell Signaling Technology.
This event is also co-sponsored by the Brandeis Biology Office.

For more information please visit: http://www.gearsclub.org/
Facebook: facebook.com/gearsboston
Twitter @gearsclub

Genetics Training Grant Retreat to be held Friday, 9/26/14

The annual Genetics Training Grant seminar is being held on Friday, September 26th at the Shapiro Campus Center Auditorium at Brandeis University. Four cutting-edge synthetic biologists: Timothy Lu, Ron Weiss, William Shih and Ahmad Khalil will share their research for the Synthetic Biology: Insights and Applications” symposium.
 
Brandeis graduate students and post-docs will have the opportunity to meet the speakers and present their work in a poster session after the talks. We encourage researchers from all departments to contribute. If you are currently, or previously were on the Genetics Training Grant, presentation of a poster is expected. 

Schedule for GTG Retreat

9:30-10:30 Ron Weiss (MIT, Dept. of Biological Engineering)
“Synthetic biology: from parts to modules to therapeutic systems.”
10:30-11:00 Coffee Break
11:00-12:00 Timothy Lu (MIT, Dept. of Biology Engineering)
“Synthetic biology for human health applications.”
12:00-1:30 Break/Lunch
1:30-2:30 William Shih (Wyss Institute)
“DNA nanostructures as building blocks for molecular biophysics and future therapeutics.”
2:30-3:30 Ahmad Khalil (Boston University, Biomedical Engineering)
“Building molecular assemblies to control the flow of biological information.”
3:30-5:00 Poster session
Shapiro Science Center 2nd floor.
All life sciences students are invited to present.

Chromosome Tethering in Yeast

On July 14, 2014, PLOS ONE  published a paper from the Haber and Kondev labs. The paper, Effect of chromosome tethering on nuclear organization in yeast, was authored by Baris Avsaroglu, Gabriel Bronk, Susannah Gordon-Messer, Jungoh Ham, Debra A. Bressan, James E. Haber, and Jane Kondev.

by Baris Avsaroglu

Chromosopone.0102474_350mes are folded into the cell nucleus in a non-random fashion. In yeast cells the Rabl model is used to describe the folded state of interphase chromosomes in terms of tethering interactions of the centromeres and the telomeres with the nuclear periphery. By combining theory and experiments, we assess the importance of chromosome tethering in determining the spatial location of genes within the interphase yeast nucleus. Using a well-established polymer model of yeast chromosomes to compute the spatial distributions of several genetic loci, we demonstrate that telomere tethering strongly affects the positioning of genes within the first 10 kb of the telomere. Further increasing the distance of the gene from the telomere reduces the effect of the attachment at the nuclear envelope exponentially fast with a characteristic distance of 20 kb. We test these predictions experimentally using fluorescently labeled genetic loci on chromosome III in wild type and in two mutant yeast strains with altered tethering interactions. For all the cases examined we find good agreement between theory and experiment. This study provides a quantitative test of the polymer model of yeast chromosomes, which can be used to predict long-ranged interactions between genetic loci relevant in transcription regulation and DNA recombination.

Patching Up Broken Chromosomes

Olga Tsaponina and James Haber’s recent paper “Frequent Interchromosomal Template Switches during Gene Conversion in S. cerevisiae” was published online by Molecular Cell on July 24, 2014.

by James Haber

“The process of copying DNA every time our cells divide is exceptionally accurate, but in copying 6,000,000,000 base pairs of the genome mistakes do occur, including both mutations and the formation of chromosome breaks. These breaks must be repaired to maintain the integrity of our chromosomes.  In our recent paper we have demonstrated that the mechanism of patching up a broken chromosome is associated with a surprisingly high level of alterations of the sequence.  Many of these changes result from “slippage” of the DNA polymerases copying the DNA during the repair process; for example in copying a sequence of 4 Gs, the polymerase occasionally jumps over one, to lose a base from the sequence (a frameshift mutation).

graphical_abstract_350In this paper we focused on more dramatic slippage events in which the copying machinery jumped from one chromosome to a related but divergent sequence on another chromosome and then jumped back, creating a chimeric sequence.  These interchromosomal template switches (ICTS) occur at a low rate when the distant sequence is only 71% identical, but if we make that segment 100% identical we could find such jumps 10,000 times more frequently, in about 1 in 300 events.  This result reveals how unstable the copying machinery in DNA repair is compared to normal DNA replication. This was very surprising and provides an explanation for many complex rearrangements associated with cancers.  In carrying out this work we identified the first protein that is needed to permit these frequent jumps: a chromatin remodeling enzyme known as Rdh54 that previously did not have a well-defined role in DNA repair in somatic cells.

Finally, we learned a new role for the proteins that survey the genome for mismatched bases that arise during replication and found that one of these proteins, Msh6, is required to specify which strand of DNA containing a mismatch is the “good one” that should be used as the template to correct the mismatch.

This work was supported by the National Institutes of Health General Medical Institute”.