Locus coeruleus catecholamines link neuroticism and vulnerability to tau pathology in aging

More than 6 million people in the U.S. are living with Alzheimer’s disease in 2022. The prevalence of this neurodegenerative disease has prompted scientists to study the factors that may increase someone’s risk for developing Alzheimer’s disease. Higher neuroticism is a well-known dementia risk factor, which is associated with disordered stress responses. The locus coeruleus, a small catecholamine-producing nucleus in the brainstem, is activated during stressful experiences. The locus coeruleus is a centerpiece of developing models of the pathophysiology of Alzheimer’s disease as it is the first brain region to develop abnormal tau protein, a hallmark feature of the disease. Chronic activation of stress pathways involving the locus coeruleus and amygdala may promote tau spread, even in cognitively normal older adults. This leads to the question of whether high-neuroticism individuals show non-optimal affective function, altered locus coeruleus neurotransmitter function, and greater tau accumulation.  Researchers in the Neurochemistry and Cognition Lab, led by Dr. Anne Berry set out to answer this question.LC blog post figurePhD candidate Jourdan Parent examined relationships among personality traits, locus coeruleus catecholamine neurotransmitter function, and tau burden using positron emission tomography imaging in cognitively normal older adults. She found that lower locus coeruleus catecholamine function was associated with higher neuroticism, more depressive symptoms, and higher tau burden in the amygdala, a brain region implicated in stress and emotional responses. Exploratory analyses revealed similar associations with low trait conscientiousness, a personality trait that is also considered a risk factor for dementia. Path analyses revealed that high neuroticism and low conscientiousness were linked to greater amygdala tau burden through their mutual association with low locus coeruleus catecholamine function. Together, these findings reveal locus coeruleus catecholamine function is a promising marker of affective health and pathology burden in aging, and that this may be a candidate neurobiological mechanism for the effect of personality on increased vulnerability to dementia.


Locus coeruleus catecholamines link neuroticism and vulnerability to tau pathology in aging. Jourdan H.Parent, Claire J.Ciampa, Theresa M. Harrison, Jenna N. Adams, Kailin Zhuang, Matthew J.Betts, Anne Maass, Joseph R. Winer, William J. Jagust, Anne S. BerryNeuroImage, 30 September 2022, 119658.

 

Lachman & Brandeis participating in multi-site Center for AI-technology to support aging in place

Margie LachmanThe National Institute on Aging has funded a new Center, the Massachusetts AI and Technology Center for Connected Care in Aging and Alzheimer’s Disease (MassAITC) for $20 million over 5 years. Based at the University of Massachusetts Amherst, it also includes investigators from Brigham and Women’s and Massachusetts General Hospitals, Northeastern University, and Brandeis University. Margie E. Lachman, the Minnie and Harold Fierman Professor of Psychology, is the PI of the Center’s Aging Pilot Core. This Pilot core will fund several pilot grants each year. Lachman is also director of the Lifespan Lab and the Boston Roybal Center at Brandeis.

The MassAITC focuses on  the development, validation, and translation of AI and technologies to bridge the information gap between patients, caregivers, and clinicians to support successful aging at home. The Pilot program will focus on testing technology solutions that address key risk factors facing older adults such as obesity, high blood pressure, sleep disorders, depression, loneliness, anxiety, falls, and a sedentary lifestyle. Technology-based interventions are a promising way to improve quality of life, enhance individual choices, reduce caregiver stress, and cut healthcare costs in older adults.

Additionally, Lachman recently received the Distinguished Mentorship in Gerontology Award from the Gerontological Society of America. This award is given to an individual who has fostered excellence in, and had a major impact on, the field by virtue of their mentoring, and whose inspiration is sought by students and colleagues.

Brandeisians Receive 2018 NSF Graduate Research Fellowships

NSF Graduate Research FellowshipFive Brandeisians (past and present) have received NSF Graduate Research Fellowships for 2018. Also, one current graduate student received an honorable mention.

This program recognizes and supports outstanding graduate students in NSF-supported STEM disciplines who are pursuing research-based advanced degrees at U.S. institutions. In 2018, the National Science Foundation (NSF) received over 12,000 applications, and made 2,000 award offers. This fellowship provides three years of financial support within a five-year fellowship period ($34,000 annual stipend and $12,000 cost-of-education allowance to the graduate institution).

Alyssa Garcia, a Brandeis Physics graduate student, received a fellowship. Marcelle Soares-Santos, Assistant Professor of Physics, is Alyssa’s advisor. Marcelle said “Alyssa will work on obtaining a sample of neutron star collisions with the goal of using them as standard sirens to determine the rate of expansion of the Universe.  This is very timely after the discovery of the groundbreaking neutron star collision GW170817 as the gravitational wave detectors are now being upgraded and when they come back later this year, they are expected to yield almost 10 times more detection’s per year. That wealth of data, is a very exciting prospect for a student starting their PhD career!”

Christopher Konow, a Ph.D. candidate in Chemistry, received an honorable mention. He works in the Irving Epstein lab analyzing the Turing Pattern formation in Growing Domains using the CDIMA (chlorine dioxide-iodine-malonic acid) chemical reaction.  For the NSF GRF, he proposed developing a novel self-oscillating hydrogel that could have uses in drug delivery.  He plans to start this project in late summer/early fall of 2018.

The Brandeis undergraduate alumni receiving 2018 NSF GR fellowships are:

  • Caroline Cappello graduated in 2011 with a bachelor’s degree in Environmental Studies and Theater Arts. She is a Ph.D. student in the Department of Biology at the University of Washington.
  • Emma Chad-Friedman received a BA in Psychology and Anthropology in 2014 and is in the PhD. Psychology program at the University of Maryland at College Park.
  • Jung Park also graduated in 2014 with a degree in Neuroscience and Psychology. He is currently a Ph.D. student in Neurobiology and Behavior at Columbia University.
  • Stanislav Popov received his B.S. degree in Mathematics and Chemistry only 2 years ago (2016). While at Brandeis, Stanislav worked in Isaac Krauss’ lab. He is pursuing a Ph.D. in Chemistry at UCLA.

Cross-Cultural Differences in Brain Activity of Specific and General Recognition

Results from paper
Results revealed regions in the left fusiform (left circle) and left hippocampus (right circle) emerged when comparing activity for correct same versus correct similar responses across cultures.

A recent publication from Paige, Ksander, Johndro, & Gutchess (Cortex, 2017) of the Aging, Culture, and Cognition Lab at Brandeis University has shed light on how culture affects brain activation when encoding information into memory. Prior work has suggested that culture influences how people perceive the world, including how much perceptual detail (e.g., size, shape, color, etc.) is remembered. It may not be surprising that culture shapes customs or even social interactions, but evidence also suggests that it shapes cognition. Because encoding details into memory necessitates the engagement of additional cognitive resources, comparing across cultures on the specificity of memory offers a glimpse into which processes and types of information are considered important across cultural groups.

Participants who originated from America or East Asia studied photos of everyday items in a magnetic resonance imaging (MRI) scanner and 48 hours later completed a surprise recognition test. The test consisted of same (i.e., previously seen in the scanner), similar (i.e., same name, different features; for example, a coffee mug that is a different shape or color than what the participant saw at encoding), or new photos (i.e., items not previously seen in the scanner) and participants were instructed to respond “same,” “similar,” or “new.”

Unlike other studies, culture did not disproportionately influence behavioral memory performance for specific information. However, East Asians showed greater activation in the left fusiform and left hippocampus relative to Americans for specific (items correctly recognized as same) versus general memory (items correctly recognized as similar). Additional follow-up analyses confirmed this cultural pattern was not driven by differential familiarity with the items across cultures. One possible explanation for this finding is cultural differences in prioritization of high (e.g., fine details, local information) versus low spatial information (e.g., coarser, global information). In the present study, increased activation in the left medial temporal regions for East Asians may be reflective of additional processes needed to encode specific details into memory, reflecting the greater demands of local, high spatial frequency processing. Current work in the lab is addressing this possibility.

Past work has failed to consider how cross-cultural differences can occur at both the behavioral and neural level. The present findings remedy that, suggesting that culture should be considered an individual difference that influences memory specificity and its underlying neural processes.

Paige, L. E., Ksander, J. C., Johndro, H. A., & Gutchess, A. H. (2017). Cross-cultural differences in the neural correlates of specific and general recognition. Cortex91, 250-261.

 

Searches for Tenure-Track Faculty in the Sciences, 2017

Brandeis has six open searches for tenure-track faculty in the Division of Science this fall, with the intent to strengthen cross-disciplinary studies across the sciences. We are looking forward to a busy season of intriguing seminars from candidates this winter.

  1. Assistant Professor of Biochemistry. Biochemistry is looking for a creative scientist to establish an independent research program addressing fundamental questions of biological, biochemical, or biophysical mechanism, and who will maintain a strong interest in teaching Biochemistry.
  2. Assistant Professor of Chemistry. Chemistry seeks a creative individual at the assistant professor level for a tenure-track faculty position in physical (especially theoretical/computational) chemistry, materials chemistry, or chemical biology.
  3. Assistant Professor of Computer Science. Computer Science invites applications for a full-time, tenure-track assistant professor, beginning Fall 2018, in the broad area of Machine Learning and Data Science, including but not limited to deep learning, statistical learning, large scale and cloud-based systems for data science, biologically inspired learning systems, and applications of analytics to real-world problems.
  4. Assistant Professor in Soft Matter or Biological Physics. Physics invites applications for the position of tenure-track Assistant Professor beginning in the fall of 2018 in the interdisciplinary areas of biophysics, soft condensed matter physics and biologically inspired material science.
  5. Assistant Professor or Associate Professor in Psychology. Psychology invites applications for a tenure track appointment at the rank of Assistant or Associate Professor, with a specialization in Aging, to start August 2018. They seek an individual with an active human research program in any aspect of aging, including cognitive, social, clinical and health psychology.
  6. Tenure Track Assistant Professor in Applied MathematicsMathematics invites applications for a tenure-track position in applied mathematics at the rank of assistant professor beginning fall 2018. An ideal candidate will be expected to help to build an applied mathematics program within the department, and to interact with other science faculty at Brandeis. Candidates from all areas of applied mathematics will be considered.

Brandeis University is an equal opportunity employer, committed to building a culturally diverse intellectual community, and strongly encourages applications from women and minorities.  Diversity in its student body, staff and faculty is important to Brandeis’ primary mission of providing a quality education.  The search committees are therefore particularly interested in candidates who, through their creative endeavors, teaching and/or service experiences, will increase Brandeis’ reputation for academic excellence and better prepare its students for a pluralistic society.

Jadhav receives NARSAD Young Investigator Grant

Assistant Professor of Psychology Shantanu Jadhav has recently been named to receive a 2015 NARSAD Young Invesigator Grant from the Brain & Behavior Research Foundation. The $70,000 award will help allow the Jadhav lab to

investigate the physiological interactions between the brain’s hippocampal and prefrontal cortex regions that support learning and memory-guided behavior. The two structures are important for different aspects of memory formation, storage, and retrieval, and impaired hippocampal-prefrontal interactions have been implicated in neurological disorders related to cognition, including memory disorders and schizophrenia.

7 Division of Science Faculty Recently Promoted

Congratulations to the following 7 Division of Science faculty members were recently promoted:

katz_dbDonald B. Katz (Psychology) has been promoted to Professor of Psychology. Don came to Brandeis as an Assistant Professor with a joint appointment in the Volen Center for Complex Systems in 2002 and was promoted to Associate Professor and awarded tenure in 2008. Don’s teaching and research serve central roles in both Psychology and the Neuroscience program. His systems approach to investigating gustation blends behavioral testing of awake rodents with multi-neuronal recording and pharmacological, optogenetic, and modelling techniques. Broad themes of the neural dynamics of perceptual coding, learning, social learning, decision making, and insight run through his work on gustation. For his research, Don has won the 2007 Polak Award and the 2004 Ajinomoto Young Investigator in Gustation Award, both from the Association for Chemoreception Sciences. Don has taught “Introduction to Behavioral Neuroscience” (NPSY11b), “Advanced Topics in Behavioral Neuroscience” (NPSY197a), “Neuroscience Proseminar” (NBIO250a), “Proseminar in Brain, Body, and Behavior II” (PSYC302a), “How Do We Know What We Know?” (SYS1c). For his excellence in teaching, Don has been recognized with the 2013 Jeanette Lerman-Neubauer ’69 and Joseph Neubauer Prize for Excellence in Teaching and Mentoring, the 2006 Brandeis Student Union Teaching Award, and the 2006 Michael L. Walzer Award for Teaching and Scholarship.

Nicolas RohlederNicolas Rohleder (Psychology) has been promoted to Associate Professor in Psychology. Nic is a member of the Volen Center for Complex Systems and on the faculty of the Neuroscience and Health, Science, Society and Policy programs. His course offerings include “Health Psychology” (PSYC38a), “Stress, Physiology and Health” (NPSY141a), and” Research Methods and Laboratory in Psychology” (PSYC52a). Nic’s research investigates how acute and chronic or repeated stress experiences affect human health across individuals and age groups. His laboratory performs studies with human participants using methods than span behavioral to molecular to understand how the hypothalamus-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS) regulate peripheral immunological responses and how these processes mediate cardiovascular disease, type 2 diabetes, and cancer, and aging. His research and teaching fill unique niches for all his Brandeis departmental and program affiliations. Nic’s research excellence has been recognized outside Brandeis with awards including the 2013 Herbert Weiner Early Career Award of the American Psychosomatic Society and the 2011 Curt P. Richter Award of the International Society of Psychoneuroendocrinology.

Matthew HeadrickMatthew Headrick (Physics) has been promoted to Associate Professor of Physics. He works at the intersection of three areas of modern theoretical physics: quantum field theory, general relativity, and quantum information theory. In particular, he uses information-theoretic techniques to study the structure of entanglement — a fundamental and ubiquitous property of quantum systems — in various kinds of field theories. Much of his work is devoted to the study of so-called “holographic” field theories, which are equivalent, in a subtle and still mysterious way, to theories of gravity in higher-dimensional spacetimes. Holographic theories have revealed a deep connection between entanglement and spacetime geometry, and Headrick has made significant contributions to the elucidation of this connection. Understanding the role of entanglement in holographic theories, and in quantum gravity more generally, may eventually lead to an understanding of the microscopic origin of space and time themselves.

Isaac Krauss

Isaac Krauss (Chemistry) has been promoted to Associate Professor of Chemistry. He is an organic chemist and chemical biologist whose research is at the interface of carbohydrate chemistry and biology. His lab has devised tools for directed evolution of modified DNA and peptides as an approach to designing carbohydrate vaccines against HIV. Krauss is also a very popular teacher and the recipient of the 2015 Walzer prize in teaching for tenure-track faculty.

Xiaodong Liu (Psychology) has been promoted to Associate Professor in Psychology. Xiaodong provides statistical training for graduate students in Psychology, Heller School, IBS, Neuroscience, Biology, and Computer Science, he serves as a statistical consultant for Xiaodong LiuPsychology faculty and student projects, and he performs research on general & generalized linear modeling and longitudinal data analysis, which he applies to child development, including psychological adjustment and school performance. He teaches “Advanced Psychological Statistics I and II” (PSYC210a,b), “SAS Applications” (PSYC140a), “Multivariate Statistics I: Applied Structural Equation Modeling” (PSYC215a), and “Multivariate Statistics II: Applied Hierarchical Linear Models” (PSYC216a). He is developing a new course on “The R Statistical Package and Applied Bayes Analysis”, and he recently won a Provost’s Innovations in Teaching Grant for “Incorporating Project-based modules in Learning and Teaching of Applied Statistics”.

Gabriella SciollaGabriella Sciolla (Physics) has been promoted to Professor of Physics. She is a particle physicist working on the ATLAS experiment at CERN in Geneva, Switzerland. Sciolla and her group study the properties of the newly discovered Higgs Boson and search for Dark Matter particles produced in high-energy proton-proton collisions at the Large Hadron Collider. Sciolla is also responsible for the reconstruction and calibration of the muons produced in ATLAS. These particles are key to both Higgs studies and searches for New Physics.

Nianwen Xue (Computer Science) has been promoted to Associate Professor of Computer Science.  The Computer Science Department is pleased to annNianwen Xueounce the promotion of Nianwen (Bert) Xue to Associate Professor with tenure. Since joining Computer Science he has made significant contributions to the research and teaching efforts in Computational Linguistics, including growing a masters program from zero up to 18 students this year. His publications are very well regarded, and focus on the development and use of large corpora for natural language processing, especially in Chinese. He has built a sizable lab with diverse funding that students from around the world are vying to enter.

Thank you to the following department chairs for their contributions to this post:

  • Paul DiZio, Psychology
  • Jane Kondev, Physics
  • Jordan Pollack, Computer Science
  • Barry Snider, Chemistry

Shantanu Jadhav Wins Sloan Research Fellowship

Shantanu Jadhav

Shantanu Jadhav, assistant professor of Psychology and Neuroscience and one of our newest faculty members, has won the prestigious Sloan Research Fellowship from the Alfred P. Sloan Foundation.

Jadhav’s research focuses on how the hippocamus and the prefrontal cortex interact and communicate with each other.  This activity influences the brain’s ability to learn, remember and make decisions.

More information about Shantanu Jadhav’s research and the Sloan Research Fellowship can be found at Brandeis NOW.

 

 

Institutional Betrayal: The case of Campus Sexual Assault

freyd1Please join us and The Women’s, Gender, and Sexuality Studies Program for a special lecture:

Institutional Betrayal: The case of Campus Sexual Assault

Presented by Prof. Jennifer Freyd
University of Oregon
Department of Psychology

Friday, September 12, 2:00 PM
Sachar International Center, Wasserman Cinematheque

Co-sponsored by The Department of Psychology, The Women’s, Gender, and Sexuality Studies Program, The Office of the Dean of Arts and Sciences
Hosted by Prof. Ray Knight

John Wardle Named Division of Science Head

John Wardle, Division of ScienceSusan Birren, Dean of Arts and Sciences, has announced that John Wardle, Professor of Physics, will be the new Head of the Division of Science.

The following is Susan’s email:

“I am pleased to announce that John Wardle will be the new Head of the Division of Science.  John is an astrophysicist and Professor of Physics and is a former chair of the Physics department.  In his new role he will oversee science-wide programs and initiatives, including the summer undergraduate research program and will work with Division of Science faculty and staff to identify new directions for the division.  I am delighted that he has agreed to take on this role and I hope that you will join with me in welcoming him.

We all owe a debt of gratitude to Eve Marder who, as the first Head of the Division, created and steered many of the priorities of the Division.  During her time as Head, Eve ably represented the Sciences at Brandeis and beyond, worked to make the Summer Undergraduate Science Program a flourishing success, changed the way we trained students and postdocs in the ethical conduct of research, and worked tirelessly to secure funding and recognition for the Sciences.  Thank you Eve!”